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A recently introduced real-space renormalization-group technique, developed for the analysis of processes in
the Kardar-Parisi-Zhang universality class, is generalized and tested by applying it to a different family of
surface-growth processes. In particular, we consider a growth model exhibiting a rich phenomenology even in
one dimension. It has four different phases and a directed percolation-related roughening transition. The
renormalization method reproduces extremely well all of the phase diagram, the roughness exponents in all the
phases, and the separatrix among them. This proves the versatility of the method and elucidates interesting
physical mechanism$S1063-651X99)05410-0

PACS numbd(s): 05.40—a, 05.20--y, 05.70.Fh

I. INTRODUCTION we study a class of systems exhibiting roughening transitions
even in one dimension, by renormalizing them with the
Surfaces and interfaces may grow in a smooth way oRSRG approach. Our motivation for that is twofold; on one
alternatively in a rough fashion. The study of the physicalhand we want to test the RSRG meth@ehich was specifi-
mechanisms originating these different behaviors has bee¢flly devised to deal with KPZ growthwhen generalized
the focus of an overwhelming number of recent studiesnd apply it to other physical situations, i.e., we intend to
[1-3]. The Kardar-Parisi-ZhangkPZ) [4] equation is the analyze its versatility to deal with different physical prob-
minimal continuous model capturing the aforementionedems. On the other hand, by doing so we will perform a
physics. In dimensions larger than 2 it may exhibit two dif- renormalization of the class of systems exhibiting a rough-
ferent phases: a flat and a rough one. Separating both of the@fiing transition ind=1, that allows us to get some insight
there is aroughening transitionApart of being a milestone into their interesting physics.
in surface-growth theory, the KPZ equation is also related to  The paper is structured as follows. In Sec. Il we present a
other interesting physical problems: The Burgers equation ifi@mily of models exhibiting a one-dimensional roughening
turbulence[5], directed polymers in random medi@], and  transition, and review their main properties. In Sec. Ill we
systems with multiplicative noisg7], among others. present a generic two-parametric model in this class suitable
While the physics of the KPZ flat phase is very well un-to be renormalized using the RSRG approach, and discuss in
derstood, elucidating the properties of the rough phase hedetail all the different phases and physical behaviors. In Sec.
proven a puzzling problerfi1,8,9. In fact, standard field- |V we briefly present the main traits of the RSRG approach,
theoretical analysis finds an unavoidable difficulty: Thediscuss its application to our model, and present a detailed
rough phase regime is controlled by a strong coupling fixedliscussion of the results. In Sec. V the conclusions are pre-
point, not accessible by standard perturbation techniquesented.
Therefore, from a field-theory point of view not much can be
concluded about the rough phasecent interesting results in
this direction can be found if®—11]). An alternative strat-
egy has been recently proposed to deal with this elusive
problem; namely, a real-space renormalization-group In this section we review the class of models exhibiting a
(RSRQ approach. Its nonperturbative nature permits a direcobne-dimensional roughening transition. The first studied
access to the strong coupling regime and, in particular, givemodel in this class is the so-called polynuclear growth model
estimations of the roughness exponent in dimensions rangingtroduced by Kerstez and Wo(KW) [18]. Its dynamics is
from d=1 to d=9 [12-14 (see alsd15]) with results in  defined by two successive steps: In the first one, particles are
very good agreement with the best numerical measurementiepositedparalle) with probability p at each site of a one-
[16]. Moreover, the same method has provided analyticatlimensional lattice. In the second one, the terragas)
evidence for the absence of an upper critical dimension foformed by the previous deposition process grow laterally in a
the KPZ strong-coupling pha$#3], which has been a highly deterministic way by units(or less if less space is available
debated subje¢tl7]. Additionally, it has also permitted us to on the terrace That is, kinks move deterministically increas-
analyze the behavior of the simpler linear surface-growthing always the averaged heidHi8]. These two processes are
model, i.e., the Edwards-WilkinsaoeW) equation[14]. iterated in time. For every there is a critical value g, p.,
In this paper we intend to go further in the application andsuch that fop> p. the surface grows homogeneously, is flat,
get an understanding of this RSRG approach. In particulatrand moves with maximal velocifyl8]. The roughness expo-

II. SYSTEMS WITH ONE-DIMENSIONAL ROUGHENING
TRANSITIONS
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nent in this flat regime is&x=0 andB=0 [19]. On the other 108e
hand, forp<p. steps are less likely to annihilate and the
surface becomes rough. In this phase the roughness exponent
is estimated to bee~0.5 andB~0.33, compatible with their 08
corresponding KPZ values. The roughening transition, as we
discuss below, and as first pointed out by KW, is related to
directed percolatiotDP) [20]. 0.6

After the seminal work by KW other models proposed for
rather different physical problems have appeared in the lit-
erature, exhibiting similar phenomenology. 0.4-%

Alon et al.[21] proposed a model with absorption of par-
ticles and desorption at the edges of grown islands. This
mimics the fact that in crystal growth particles absorbed in 02
the interior of grown islands are more strongly bounded than
particles on the edges. Their model is sequentially updated,
and for large values of the absorbing probability the system 0ok e Tl L LR FEERE A
is rough (@=0.5, andB~0.33, compatible with their corre- P
sponding KPZ valugs while for smaller values of the grow- : : . .
ing probability, the desorption mechanism has a larger rela- FIG. 1. System phase diagram. Filled circl@)(denote points
tive importance, small islands are more easily eliminated. .the Edward-Wllklnson umversghty class, crosseg)(dgnote

. . points in the flat class, empty circle$>] denote points in the

and the asymptotlc_ behavior is flat¢=5~0). Moreover, self-similar class, and dashed lines denote points in the random
Fhese authors'ldentlfy also a spontaneously broken's'ymr_netr(yepositiOn class.
in the model in the flat phag®1]. The phase transition in
this case is also related to DP.

More recently an apparently unrelated model has bee
formulated in order to describe fungal growth; a fungalrelations among different sites.

colony grows invading an environment, with the peculiarity We consider flat initial confiqurationgh(i)=0 Vi at t
that the local growth probability is non-Markovigi22]. 0], periodic boundary conditign&4] [Ez(l)):h(L) Vi),

:?é'éh It_h'serznfg'r? degerre]g(l:Efrz];] ?ggnijogSIr((j)inE%nailnm?rr];:sliirolﬁt-and sequential updating. The dynamics is defined by the fol-
» —OP 9 9 lowing algorithm: At each simulation step a lattice Sigeis

betx\lllet(;r; a}oﬁroorlé?’:elr-:\:i/:/)npeh dazaoggijs ir:;arterzgég]rﬁhon property_selected randomly. Its height can either be increased by one
The roughening transition can be related to a DP transitior[1Jnlt with probabilityp (random deposition
[20,23. Having introduced this class of DP-related roughen-
ing transitions, in the next section we present a new model,

in this same generic class, which turns out to be more suit- ) ] -
able to be studied using the RSRG. or alternatively, with complementary probability-Ip; the
surface is smoothened awegvaporation or condensatipim

the following way:

These occur with complementary probability-p at each
Hme step, and they are responsible for the generation of cor-

h(ig)—h(ig) +1, ()

Ill. THE MODEL

Instead of trying to directly renormalize any of the previ- h(io)—h(io) +intLa(h(io+ 1) =h(io))],

ously defined models, we find it more convenient to define a

model with the same generic phenomenology. The reason for h(ig)—h(ig) +intfa(h(io—1)—h(ig))], v

this is that in the new model it seems that there is no prolif-

eration of new relevant parameters when the proposedhereae[0,1]. Each one of these two possible events oc-

renormalization-grougRG) transformation is applie@for a  curs with equal probability (+ p)/2. This process causes a

more detailed discussion about proliferation of parameters idecrease of the height different@mootheningbetween the

this scheme sefl4]), and, therefore, the RG flow and the siteiy and one of its neighbors. In the dynamical rule given

fixed point structure can be analyzed in a simple way. Thidy Eqg. (2) we have introduced the integer part function to

does not exclude, in principle, the possibility of renormaliz-enforce the height variables to take integer values.

ing directly any of the previously described models. Let us now discuss the model phenomenology. We have
The model describes a surface driven by three differeninvestigated the parameter spaggg) with analytical and

physical processes: deposition, evaporation, and condenseemputational methods in different points as shown in Fig. 1.

tion of particles on a one-dimensional lattides 1, ... L The evolution of the surface width can belong to one out of

(generalizations to higher dimensions being straightforyvard four different scaling regimes depending on the parameter

At each lattice site we associate an integer non-negative vanralues,p anda. These four universality classes define four

ableh(i). The random deposition process corresponds to agualitatively different growth morphologies, the correspond-

external flux of particles, and occurs at each time step withng typical surface profiles of which are shown in Fig. 2.

probability p. The other two processes, i.e., evaporation andrhey correspond to the following universality classes: The

condensation, decrease the height difference between neigBdwards-Wilkinson[25,1-3, the flat, the self-similar, and

bor sites, and constitute therefore a smoothening sourcéhe random depositiofil—3] universality class.
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100 ‘ @ 2000 - ( face width for different system sizésee figure caption The
50 m 1000 M best curve collapse is obtained far=0.50+0.01 andpg
£ WA £ e At =0.25-0.01 in agreement with the system being in the
£ VPR TR = Edwards-Wilkinson universality class. This phase has a
70 Pt | looo mean growing velocity different from zer@e., grows con-
-100 ‘ 2000 : tinuously in timg and has a rough surface appearance as
10 \ o 3500 . @ shown in Fig. 2a). In order to further confirm that the model
B I"“*'I'T""hr"ﬂ"'“'l"'""L' J is in the EW universality class and not in the KPZ one we
£, i £ e b have computed the dependence of the averaged velocity on
2 mmm E ool . the tilt[3], and verified that there is none, i.e., the velocity is
=5 oo b d Lo a constant for every fixed tilfat least for values op suffi-
10 ‘ _2500 . ciently above the roughening transition, for which numerical
0 500 1000 0 500 1000

accuracy is better
Let us present here a simple argument showing why this
FIG. 2. Evolution profiles for the different universality class at rough phase is EW-like and not KPZ-like. For that, we cal-

times (from bottom to top t=10, 1¢, 1C°, 10%, and 10 for L culate the mean over different runs of the quantity,t

=1000. (@ (p=0.4,a=0.5) corresponding to the Edwards- 1 A) (whereAt=1/L is a time incrementfor a fixed con-

Wilkinson class,(b) (p=0.1,a=0.5) in the flat class(c) (p figurationh(i,t) at timet. We can write

=0.75,a=1.0) in the self-similar class, and) (p=1,a=0.5) in

the random deposition class. Curves &t10* and 16 (t p 1(1-p)

=10,10) are shifted upwarddownward for the sake of clarity. (h(i,t+At))—h(i 7t)=E + =

a(h(i+1t)—h(i,t))

L 2
A. Edwards-Wilkinson universality class ®
The EW class is characterized by critical indexes 1(1-p)
=1/2, B=1/4, andz= 2 [1-3]. We observe this type of scal- +— ath(i—1t)—h(i,t))

ing for parameter valuep>p.(a), [wherep=p.(a) is the L2

separatrix between this phase and the flaff ovith p# 1 and
a#0,1 (see Fig. 1 where points in this class are marked with

4

filled circles. In Fig. 3a) we show the collapse of the sur- =§+(12Lp)a(h(i F1+h(i—1H—2h(i0), ()
1.0 . .
. p=025s ~ @ : : -
2 P where it can be seen that there_ are two dlffgrer)t contrlputlons
) to the local velocity at each site the contribution coming
=3 from deposition, proportional tp, and the term arising from
01— the smooth away processes. Observe that in this calculation
10 10t/L2 10010 we have neglected the effect of the integer part function,
0.6 I which we assume to be irrelevant in this phase., we ex-
ologr - (b) pect it to reduce the mean velocity but not to change quali-
=) tatively the behaviof26]).
g 04T | Dividing Eq. (5) by At and performing the thermody-
. namic limit, i.e.,L—« (or equivalentlyAt—0), we obtain
RS TS . 100 10°
ah(x) (1-p) _,
< - >— p+ —5—avh(x.), ©®)
=2
§ which corresponds to differential evolution of the Edwards-
= Wilkinson equation(averaged over noigelriven by an ex-
T P T ternal constant forcp. The main point of this calculation is
t/L? that it shows that the dynamics is controlled by a Laplacian

term, and no gradient square terms appear. Therefore, the
=32, 50, 64, 90, 128, and 256, for three different pairs of parameteﬂlggel IS e)lépeCt:e(i to bezlg t{;ﬁ EW ur,:.lverza“ty .?)nd not ljn the
values corresponding t¢a) the Edwards-Wilkinson universality one. Formp ora IS equation describes random
class, p,a)=(0.4,0.5): (b) the flat universality class, pa) d§p05|t|on as, in fact, is the case in our merI. Equatin
=(0.1,05); and(c) the self-similar universality class,p(a) '@l to describe the growth of our model in the cages
=(0.75,1.0). In(@) and(c) the width is rescaled with® and plotted ~ =Pc Or a=1. In fact, as stated before, in E@) the integer
versus the time rescaled with?, with @=0.50-0.01, g=0.25 part function has been neglected and this approximation is
+0.01 in (a), and @=1.00+0.02, 8=0.50+0.03 in(c). In (b) a  incorrect when(i) p<p., the fluctuations of the surface are
semilogarithmic scale is used; there is a logarithmic dependence dg#imall, and the rounding-off mechanism due to the integer
time for t<10, and a system size independent saturation widthpart function takes over, pinning and flattening the surface,
compatible witha=0.00+0.01 and8~0. and(ii) in the casea=1, for which in the absence of smooth-

FIG. 3. Width evolution for system sizeslL
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ening, the continuum limit has to be taken more carefully. Inas a consequence of the integer part function in the dynamics
this last case, we expect the dynamics to be controlled by thevhich, as discussed in the previous subsection, favors

diffusion of height steps. evaporatioh does not exist in this case. This explains why
there is no roughening transition far=1.
B. Flat universality class The main qualitative physical difference between this

Sphase, the EW, and the flat phases, is that here there is no

This universality class is characterized by critical indexe smoothening of height gradients. Large steps diffuse in space

@=0 and$=0 (with logarithmic corrections We observe o 1 the effect of the second and third rules in &8, but
this phase. for parameter_valqegs’.\’.pc(a) W'th p#0 andg do not smooth away, creating a much rougher surface.
#0,1. In Fig. 1 we plot points in this class with crosses in the Now we study thé mean-field solution of this case. ob-
parameter space. In _th_|s phase, height fluctuations are 'nd?éined by neglecting spatial correlations. This turns out to be
pendent on sample sizee., «=0), the mean surface veloc- 5, ,sefi| calculation as we will show afterwards.

ity is zero in the thermodynamic limit, and the lowest level : - :
(h=0) is occupied with a finite density as shown in Fig. sit(;r?c? rr]r;z\i/sete;r ﬁg%?:ovgrgégﬁirpnrg??sb”wh't) foragiven
2(b). Due to finite-size effects, finite systems in this class
may have a nonvanishing velocity. aP(h,t)
In Fig. 3(b) we have plotted in a semilogarithmic scale the ot

surface width versus time for different system sizese fig-
ure caption. Observe that the width has a logarithmic depen- —(1—p)P(h,t)
dence ont for short times,

=pP(h—1t)—pP(h,t)+(1—p)P(h,t)

=p[P(h—1t)—P(h,t)], 9
W(t)=log(t). @)
where we have assumed nearest-neighbor sites to have the
For all the different points in this phase, by employing data-same probability distribution as the site under consideration.
collapse techniques we evaluate=0.00+0.05 andB3=0 Equation(9) is the same equation that we would obtain if we
with logarithmic corrections. considered a mean-field approximation of the random depo-
The existence of this phase is due to the fact that for smalition process. In order to solve E), it is convenient to
values ofp the deposition process is more unlikely than theintroduce the generating function defined as
smoothening one, and there is a physical constraint prevent- )
ing the surface to go below the lowebt=0 level. The in- - h
teger part function in the dynamic rules favors the evapora- G(X’t):gfo x"P(h,t), (10)
tion process by giving an extra negative drift term with
respect to Eq(6). This extra term binds the surface to the with the normalization conditio(1t)=1 V t. The master
lowest level making it flat for small values pf In particular,  equation written in terms oB(x,t) reads
for a fixed value ofa, the roughening transition corresponds
to the value ofp for which this extra negative term is equal dG(X)
to — p. For values op slightly larger than that critical value ot PIXG(X,1) = G(x,) ]=p(x—1)G(x,1). (11)
the surface unbinds and grows with constant velocity.
By taking derivatives with respect to the dummy variakle

C. Self-similar universality class one can write
This class is characterized lay=1, B=1/2, andz=2; it Wz(t)z(h2—<h)2>=[a2G(x)+(9 G(x)]xe1
is observed for parameter values 1 andp# 0,1, which are X X =
plotted in Fig. 1 with empty circles. In Fig(& we show the —[0,G(X)|x=11%. (12

collapse of the width for different system sizésee figure

caption; from the best data collapse we measare 1.00  Taking time derivatives of both sides and integrating the
+0.02 and=0.50+0.03. The surface in this regime is, resulting equation, we finally obtaW¥(t) = \/pt, and, conse-
therefore, self-similar; that is, height fluctuations are of thequently, 3=1/2. On the other hand, the height differences
order of magnitude of the system sigsee also Fig. @  among neighborgor step$ perform a random diffusion in
where a typical profile is shownIn this case, contrary to the direction perpendicular to the growth. Like in the case of
a#1 we observe no roughening transitidgexcept for a arandom walker the average step displacement scales as the

trivial one atp=0.) square root of time. But the effective time for step displace-
Observe that fon=1 the dynamical rules can be written ment is (1-p)t, and, therefore, in order to cover a distance
as L, a characteristic time
h(ig,t)=h(ig,t—21)+1 with Prob p, t~L%/(1—p) (13

h(ig,t)=h(ig+1,t—1) with Prob (1—p)/2, (8) is needed. Consequently, the dynamical exponerz=i2.
Combining this result with the fact th@@=1/2, we obtain
h(ig,t)=h(ip—1,t—1) with Prob (1—p)/2, a=1 just by using the scaling relatiom=z/8. Therefore,
the values of the critical exponents found in mean-field ap-
where the integer part function, being redundant, has beeproximation agree perfectly with the numerical results.
omitted. Therefore, the extra negative driving term, arisingMoreover, the mean-field approximation also reproduces the
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in the contact proceg20]. On the other hand, the smooth-
ening mechanism, occurring with probability-J, may in-
duce[27] the “infection” of an empty site by a neighboring
active site as in the contact process. In this language, the flat

{ surface phase corresponds to the DP active phase, and the
/! rough phase corresponds to the absorbing one. The key fea-
] ture is that in absorbing regiorithat is, in regions withs;

=0), activity cannot be generated spontaneously. This is the
05 | = ] main physics of DP and, therefore, the critical behavior at

’ . = the roughening transition is related to the transition into an
i absorbing phase of DP and related models.

By using this mapping the scaling of some magnitudes
can be related to DP exponents. In particular, the density of
sites at the lowest level, should scale as a function of the
distance to the critical points=|p—p|, like ny~e&for.
Right at the critical pointn, decays in time asng(t)
~t~%op, For finite systems of sizk,

==

0.0 T
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 4. Saturated width of a system of size- 64 witha=0.5,
as a function op. The data are extremely well fitted by the mean-
field prediction.

dependence of the saturation width as a functiop ébr a
no~L ~Pop/vippP~| =X, (16)

wherev, pp is the correlation length exponent. Finally, the

fixed system size. In fact, using(t) = \pt and Eq.(13) we
mean surface velocity is inversely proportional to the life
time 7=|&|~"I.oP of the DP active phase, wherg pp is the

find
p
Wsai(p)~L \/m (14
usual correlation time exponent. Therefore,

in perfect agreement with the simulation results as shown in

Fig. 4. V~g Y~L 7V~ L, (17

D. Random deposition universality class The one-dimensional DP values of the previously introduced
The random deposition class is characterizedalsy exponents are Bpp=0.276494), 6=0.159473), X;

and 8= 1/2. With dashed lines in Fig. 1 we have plotted the =0.252085), andx,=1.58074(4)(numbers in parentheses

two lines in this class, namely, those given by the conditionglenote uncertainties in the last figuf@8].

a=0 and p=1, respectively. For these values the only In order to verify numerically if the previous prediction

physical mechanism present is the random deposition of paiolds we have studied extensively the 0.5 case. We have

ticles. In this phase the surface is spatially uncorrelated, angerformed numerical simulations in order to determine criti-

its roughness increases rapidly with time, wigh=1/2, and  cal exponents, to be compared with their corresponding DP

there is no width saturatiorz& ) as shown in Fig. @). values. In particular, by considering a system 4ize3000,

and averaging over 8000 independent runs, we meagLas

a function of time. A power-law decay is observed(tite

As stated previously, both in our model and in the previ-cgtr;(:zltpomb Pc=0.13740-0.00005, with an associated ex-

ously discussed ones, the transition between the flat and the
rough phase belongs to the percolation DP universality class.
The reason for this can be explained by mapping the dynam-
ics in a directed percolationlike model. In order to do this in
our model (for the others, similar mappings can be per-in good agreement with its DP value. Using the previously
formed, we introduce a new set of variablés} defined as estimated value of the critical point, we measure the station-

ary density of sites at the lowest layler=0 for p<p.. In

Fig. 5(b) we show the data fos €[10™ 4,10 1]. Performing
(15  afit for small values ot we find

E. The roughening transition

9=0.160* 0.003, (19)

s=1 if h(i)=0,

si=0 if h(i)#0.
By studying the evolution of these variables we focus our Bop=0.275-0.007, (19
attention on the lowest height level occupation. This infor-
mation is enough to describe the phase transitid@) as we also in good agreement with its DP value. By performing a
show in what follows. A sité with s;=1 corresponds to an finite-size scaling analysis, we determirg=0.250+0.03
occupied(active site in a DP-like modelor better, in a andx,=1.57+0.01 to be compared with their corresponding
contact process model, which is a sequentially updated veBDP valuesx;=0.25208(3) anc,=1.58075), respectively.
sion of DP[20]). On the contrarys;=0 for empty(absorb- Numerical data are shown in Figsichand 5d).
ing) sites of the DP-like model. The deposition process may Summing up, all the measured exponents confirm the hy-
change with probabilityp an occupieds;=1, site into an pothesis that the roughening transition is controlled by a DP
unoccupieds; =0, site. This same mechanism is also presenfixed point.
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Lo — 10 - the identification of the effective dynamics of these cells at a
= @ == © generic scale; that is, one studies the effective rules by which

3 6=0.16 A T 08 cells are progressively invaded by the growing surface at a
= = T given scale. This effective dynamics is described by param-

eters that change upon changing the scale of description. In
our case we have a set of parameters (a,,py) at scale

1o 1oo 1000 L. Knowing the effective dynamics at scdlg, defined by
L . .
: X, and the associated width at that scele, the renormal-
[~ @] ization problem consists of determining what the width val-
TN RALST ues are oV, , and the effective dynamic parametejs ,,
T ] at a coarser scale, ,,. This problem was analyzed ji2—
T 14], with the final conclusion that one can write,
o7 T 10t 1o 10 10 100 1000 WEer:WEFm(Xk)y (20

€ L
whereF (x,) =1+ 4w?(m,x,) andw(m,x,) is the width of
a system composed of"2cells of unitary height with a dy-
namics driven by the parameteqs. These last functions can
=0.160+0.003.(b) Log-log plot of the asymptotic density of states b_e dete_rmlned by means of a rather inexpensive Mo_nte Carlo
at the lowest site versus=p,— p; from the slope we measure 5|_mulat|on. The_ W|dth_at scale+ 2 can be galculated in tWO
Bop=0.275+0.007. In(c) and(d) we report the density of sites at different ways:(i) by direct use of the previous formula with
the lowest level and the mean velocity at the critical point for dif- M=2, or alternatively,(ii) by iterating twice the previous
ferent system sizes. The corresponding critical indexes xare transformation withm=1. Imposing that both the previous
=0.250+0.003 andx,=1.57+0.01. procedures give the same result for the witlth,,, one
obtains a renormalization condition, namel$2,14]

Xes1=F1 Y(F (X ) F1(Xy)). 21
Having described in detail the model phenomenology, in 1= P (Fa(0/Fa(x0) @y

this section we apply the RSRG technique recently proposeflor monoparametric models this equation is enough to deter-
[12—-14 to renormalize our model. For a detailed descriptionmine the evolution under RG transformations of the effective
of the method we refer the reader to REf4]. In a nutshell  parametex,, and from it all the scale-invariant physics can
the RG method consists of two main ingredients. One is thge elucidated12—14. In the present two-parametric dynam-
definition of cells of generic substrate length=2L, ics it is necessary to consider another independent analogous

(where Ly is the length of the minimal relevant substrate equation, corresponding to calculating the width at sdale
scale and heighth,, with which the space in which the +3 in two different ways,

surface grows can be covered; cells are progressively in-
vaded by the growing surfagsee Fig. 6. The second one is X 1=F1 HF () F (X)),

FIG. 5. Critical indexes characterizing the DP transiti¢a.
Log-log plot of the density of sites at the lowest level as a function
of time at (0.1374,0.5); the associated critical exponentfis

IV. RENORMALIZATION APPROACH

(22
Xer1=Fo l(F3(Xk)/F1(Xk))-

The first equation is just Eq21), and the second states that
the width obtained by dividing the system in eight cells
should be the same as the width obtained dividing first the
system in two blocks, and then each of these blocks in four
subcells. This set of equations give tftkscrete flux of the
effective dynamics parameters upon coarse graining. The
scale-invariant dynamics is determined by the fixed p@nt
pointg of Eg. (22), x* for which

F1(X*)=Fa(x*)/Fq(x*),

k+1

(23

Fa(x*)=F3(x*)/Fq(x*),

is satisfied. Once* is known, thea exponent is easily de-
termined by

b [T W a=7zlogy[F1(x*)]. (29)

L,

In order to evaluate th&,, F,, andF3 functions we have

FIG. 6. A system of siz&, ,=4L, can be studied composed of performed Monte Carlo simulations for a system of dize
four cells of sizel, or alternatively by iterating twice a partitionin =2,4,8, and averaged, once the stationary state is reached
cells of half length. See text. for long enough times. We have determined these functions
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1.0
« F,=F,/F,
> F,=F,F,
0.8 (0.75,1.00)
0.6 :
-]
04 1
02} (014,050 (0.40,0.50)
00 . . . ‘
0.0 0.2 0.4 0.6 0.3 1.0
p
FIG. 7. The two linegmarked, respectively, with diamonds and

empty circley correspond to the values for whicliq(x)

=F,(X)/F1(x) andF5(x)=F3(x)/F(x), within the numerical er-

ror, respectively. The intersection points of these two lines define FIG. 8. Renormalization-group flow for E(R). The stable fixed

the dynamic fixed points, invariant under RG flow. See text. points arep=0.4, a=0.5 (EW behavio}, p=0.75, a=1 (self-

similar phasg p, Va (flat phas¢ and the unstable poinp

on the sites of a 100100 lattice in the parameter space, that = 9-14 2= 0.5 (corresponding to a DP transitipr-or the flux line

is, for values ofp anda multiples of 0.01. stgrtlng at (0.95,0.95),.We show epr|C|_tIy the pomt_s found by |ter-
In Fig. 7 we show the curves corresponding Fq ating the renormalization-group equations. To guide the eye dis-

—F,/F, and F,=F/F,. The intersecting points of these crete sequences of points obtained by iteration of the RG transfor-

. . L . mation are plotted as continuous lines.
curves are the RG fixed points within numerical accuracy. P

We find the following stable fixed points: to the flat phase (d) All points witha=1 andp>0, i.e., in

the self-similar phase, flow to a fixed point at (0.75,1) with

a=1.00+0.01.
p=0.75,a=1, corresponding toa=1.00+0.02, We have verified all the above conclusions to be stable
when more refined RSRG algorithms are considered. That is,
p=0.40, a=0.5, corresponding tax=0.50+0.01, instead of considering bypartitions and quadripartitions of a

(25) given growing surface, one can consider larger partitions,
and the technique described above remains the same in spirit
[12,14. By doing this, we observe all the above-described
results to remain unaltered. This stability, upon changes in
the RSRG details, supports the fact that no new relevant

while at (p,a)=(0.14,0.5) there is an unstable fixed point. parameters have to be introduced upon renormalization to

The stability is determined by observing whether nearbydescribe the scale-invariant dynamicsd], i.e., the scale-

points flow into the fixed point or flow away from it, under invariant dynamics is well described at an arbitrary scale by

application of Eq.(22), and the corresponding values ef the found fixed points.

are determined using ER4).

We have also determined different renormalization flux
lines as shown in Fig. 8. Observe that each continuous flow
line in Fig. 8 has been constructed by joining together con-
secutive points obtained from renormalization-group equa- We have discussed different growth models exhibiting a
tions (22) (which determine a discrete iterative mapping andone-dimensional roughening transition. In particular, we
not a continuous floyv Observe that the lines defined by  have introduced a two-parametric model capturing the main
=0.5 anda=1 define invariant manifolds. physics of this type of roughening transition, i.e., exhibiting

The accordance between the renormalization flow diaa rough and a flat phase, and a critical line separating them,
gram (Fig. 8 and the phase diagram independently foundrelated to directed percolation. The model has the technical
with simulation on large systenifig. 1) is very good(com-  advantage that no new parameter proliferate upon renormal-
pare Figs. 1 and)8In particular,(a) For all points yielding ization. Apart from the previously discussed phenomenol-
in the EW phase we find trajectories converging to the stablegy, the model exhibits also a self-similar phase. All the
fixed point (0.4,0.5) witha=0.5+0.01, in perfect agree- different phases and transitions have been analyzed by means
ment with the EW value(b) The separatrix in Fig. 1 is of extensive numerical simulations and some analytical ap-
reproduced quite accurately in Fig. 8; in particular, the un{proaches.
stable fixed point (0.14,0.5) is located on(it) Points to the We have renormalized this model by using a recently in-
left of the separatrixi.e., points in the flat phagdlow to-  troduced RSRG approach. In particular, fixed points, corre-
wards the fixed line ap=0 for which =0 (corresponding sponding to the scale-invariant dynamics are found, and the

p=0, V a, corresponding toa=0.00+0.01,

V. CONCLUSIONS
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