
in

PHYSICAL REVIEW E OCTOBER 1999VOLUME 60, NUMBER 4
Renormalization-group study of one-dimensional systems with roughening transitions
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A recently introduced real-space renormalization-group technique, developed for the analysis of processes in
the Kardar-Parisi-Zhang universality class, is generalized and tested by applying it to a different family of
surface-growth processes. In particular, we consider a growth model exhibiting a rich phenomenology even in
one dimension. It has four different phases and a directed percolation-related roughening transition. The
renormalization method reproduces extremely well all of the phase diagram, the roughness exponents in all the
phases, and the separatrix among them. This proves the versatility of the method and elucidates interesting
physical mechanisms.@S1063-651X~99!05410-0#

PACS number~s!: 05.40.2a, 05.20.2y, 05.70.Fh
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I. INTRODUCTION

Surfaces and interfaces may grow in a smooth way
alternatively in a rough fashion. The study of the physi
mechanisms originating these different behaviors has b
the focus of an overwhelming number of recent stud
@1–3#. The Kardar-Parisi-Zhang~KPZ! @4# equation is the
minimal continuous model capturing the aforemention
physics. In dimensions larger than 2 it may exhibit two d
ferent phases: a flat and a rough one. Separating both of t
there is aroughening transition. Apart of being a milestone
in surface-growth theory, the KPZ equation is also related
other interesting physical problems: The Burgers equatio
turbulence@5#, directed polymers in random media@6#, and
systems with multiplicative noise@7#, among others.

While the physics of the KPZ flat phase is very well u
derstood, elucidating the properties of the rough phase
proven a puzzling problem@1,8,9#. In fact, standard field-
theoretical analysis finds an unavoidable difficulty: T
rough phase regime is controlled by a strong coupling fix
point, not accessible by standard perturbation techniq
Therefore, from a field-theory point of view not much can
concluded about the rough phase~recent interesting results i
this direction can be found in@9–11#!. An alternative strat-
egy has been recently proposed to deal with this elus
problem; namely, a real-space renormalization-gro
~RSRG! approach. Its nonperturbative nature permits a dir
access to the strong coupling regime and, in particular, g
estimations of the roughness exponent in dimensions ran
from d51 to d59 @12–14# ~see also@15#! with results in
very good agreement with the best numerical measurem
@16#. Moreover, the same method has provided analyt
evidence for the absence of an upper critical dimension
the KPZ strong-coupling phase@13#, which has been a highly
debated subject@17#. Additionally, it has also permitted us t
analyze the behavior of the simpler linear surface-grow
model, i.e., the Edwards-Wilkinson~EW! equation@14#.

In this paper we intend to go further in the application a
get an understanding of this RSRG approach. In particu
PRE 601063-651X/99/60~4!/3719~8!/$15.00
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we study a class of systems exhibiting roughening transiti
even in one dimension, by renormalizing them with t
RSRG approach. Our motivation for that is twofold; on o
hand we want to test the RSRG method~which was specifi-
cally devised to deal with KPZ growth! when generalized
and apply it to other physical situations, i.e., we intend
analyze its versatility to deal with different physical pro
lems. On the other hand, by doing so we will perform
renormalization of the class of systems exhibiting a rou
ening transition ind51, that allows us to get some insigh
into their interesting physics.

The paper is structured as follows. In Sec. II we presen
family of models exhibiting a one-dimensional rougheni
transition, and review their main properties. In Sec. III w
present a generic two-parametric model in this class suita
to be renormalized using the RSRG approach, and discus
detail all the different phases and physical behaviors. In S
IV we briefly present the main traits of the RSRG approa
discuss its application to our model, and present a deta
discussion of the results. In Sec. V the conclusions are
sented.

II. SYSTEMS WITH ONE-DIMENSIONAL ROUGHENING
TRANSITIONS

In this section we review the class of models exhibiting
one-dimensional roughening transition. The first stud
model in this class is the so-called polynuclear growth mo
introduced by Kerstez and Wolf~KW! @18#. Its dynamics is
defined by two successive steps: In the first one, particles
deposited~parallel! with probability p at each site of a one
dimensional lattice. In the second one, the terraces~kinks!
formed by the previous deposition process grow laterally i
deterministic way byu units ~or less if less space is availab
on the terrace!. That is, kinks move deterministically increa
ing always the averaged height@18#. These two processes ar
iterated in time. For everyu there is a critical value ofp, pc ,
such that forp.pc the surface grows homogeneously, is fl
and moves with maximal velocity@18#. The roughness expo
3719 © 1999 The American Physical Society
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3720 PRE 60BIANCONI, MUÑOZ, GABRIELLI, AND PIETRONERO
nent in this flat regime isa50 andb50 @19#. On the other
hand, for p,pc steps are less likely to annihilate and t
surface becomes rough. In this phase the roughness expo
is estimated to bea'0.5 andb'0.33, compatible with their
corresponding KPZ values. The roughening transition, as
discuss below, and as first pointed out by KW, is related
directed percolation~DP! @20#.

After the seminal work by KW other models proposed f
rather different physical problems have appeared in the
erature, exhibiting similar phenomenology.

Alon et al. @21# proposed a model with absorption of pa
ticles and desorption at the edges of grown islands. T
mimics the fact that in crystal growth particles absorbed
the interior of grown islands are more strongly bounded th
particles on the edges. Their model is sequentially upda
and for large values of the absorbing probability the syst
is rough (a'0.5, andb'0.33, compatible with their corre
sponding KPZ values!, while for smaller values of the grow
ing probability, the desorption mechanism has a larger r
tive importance, small islands are more easily eliminat
and the asymptotic behavior is flat (a'b'0). Moreover,
these authors identify also a spontaneously broken symm
in the model in the flat phase@21#. The phase transition in
this case is also related to DP.

More recently an apparently unrelated model has b
formulated in order to describe fungal growth; a fung
colony grows invading an environment, with the peculiar
that the local growth probability is non-Markovian@22#.
With this main ingredient, and considering a triangular l
tice, López and Jensen@22# found a roughening transition
between a rough EW phase and a flat regime.

All the aforementioned models share a common prope
The roughening transition can be related to a DP transi
@20,23#. Having introduced this class of DP-related roughe
ing transitions, in the next section we present a new mo
in this same generic class, which turns out to be more s
able to be studied using the RSRG.

III. THE MODEL

Instead of trying to directly renormalize any of the prev
ously defined models, we find it more convenient to defin
model with the same generic phenomenology. The reason
this is that in the new model it seems that there is no pro
eration of new relevant parameters when the propo
renormalization-group~RG! transformation is applied~for a
more detailed discussion about proliferation of parameter
this scheme see@14#!, and, therefore, the RG flow and th
fixed point structure can be analyzed in a simple way. T
does not exclude, in principle, the possibility of renormal
ing directly any of the previously described models.

The model describes a surface driven by three differ
physical processes: deposition, evaporation, and conde
tion of particles on a one-dimensional lattice,i 51, . . . ,L
~generalizations to higher dimensions being straightforwa!.
At each lattice site we associate an integer non-negative v
ableh( i ). The random deposition process corresponds to
external flux of particles, and occurs at each time step w
probability p. The other two processes, i.e., evaporation a
condensation, decrease the height difference between n
bor sites, and constitute therefore a smoothening sou
ent
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These occur with complementary probability 12p at each
time step, and they are responsible for the generation of
relations among different sites.

We consider flat initial configurations@h( i )50 ; i at t
50#, periodic boundary conditions@24# @h(1)5h(L) ;t#,
and sequential updating. The dynamics is defined by the
lowing algorithm: At each simulation step a lattice sitei 0 is
selected randomly. Its height can either be increased by
unit with probabilityp ~random deposition!,

h~ i 0!→h~ i 0!11, ~1!

or alternatively, with complementary probability 12p; the
surface is smoothened away~evaporation or condensation! in
the following way:

h~ i 0!→h~ i 0!1 int@a„h~ i 011!2h~ i 0!…#,

h~ i 0!→h~ i 0!1 int@a„h~ i 021!2h~ i 0!…#, ~2!

whereaP@0,1#. Each one of these two possible events o
curs with equal probability (12p)/2. This process causes
decrease of the height difference~smoothening! between the
site i 0 and one of its neighbors. In the dynamical rule giv
by Eq. ~2! we have introduced the integer part function
enforce the height variables to take integer values.

Let us now discuss the model phenomenology. We h
investigated the parameter space (p,a) with analytical and
computational methods in different points as shown in Fig
The evolution of the surface width can belong to one out
four different scaling regimes depending on the parame
values,p and a. These four universality classes define fo
qualitatively different growth morphologies, the correspon
ing typical surface profiles of which are shown in Fig.
They correspond to the following universality classes: T
Edwards-Wilkinson@25,1–3#, the flat, the self-similar, and
the random deposition@1–3# universality class.

FIG. 1. System phase diagram. Filled circles (d) denote points
in the Edward-Wilkinson universality class, crosses (3) denote
points in the flat class, empty circles (s) denote points in the
self-similar class, and dashed lines denote points in the ran
deposition class.
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A. Edwards-Wilkinson universality class

The EW class is characterized by critical indexesa
51/2, b51/4, andz52 @1–3#. We observe this type of sca
ing for parameter valuesp.pc(a), @wherep5pc(a) is the
separatrix between this phase and the flat one# with pÞ1 and
aÞ0,1 ~see Fig. 1 where points in this class are marked w
filled circles!. In Fig. 3~a! we show the collapse of the su

FIG. 2. Evolution profiles for the different universality class
times ~from bottom to top! t510, 102, 103, 104, and 105 for L
51000. ~a! (p50.4, a50.5) corresponding to the Edwards
Wilkinson class, ~b! (p50.1, a50.5) in the flat class,~c! (p
50.75,a51.0) in the self-similar class, and~d! (p51, a50.5) in
the random deposition class. Curves att5104 and 105 (t
510,102) are shifted upward~downward! for the sake of clarity.

FIG. 3. Width evolution for system sizes L
532, 50, 64, 90, 128, and 256, for three different pairs of param
values corresponding to~a! the Edwards-Wilkinson universality
class, (p,a)5(0.4,0.5); ~b! the flat universality class, (p,a)
5(0.1,0.5); and ~c! the self-similar universality class, (p,a)
5(0.75,1.0). In~a! and~c! the width is rescaled withLa and plotted
versus the time rescaled withLz, with a50.5060.01, b50.25
60.01 in ~a!, and a51.0060.02, b50.5060.03 in ~c!. In ~b! a
semilogarithmic scale is used; there is a logarithmic dependenc
time for t,10, and a system size independent saturation wi
compatible witha50.0060.01 andb;0.
h

face width for different system sizes~see figure caption!. The
best curve collapse is obtained fora50.5060.01 andb
50.2560.01 in agreement with the system being in t
Edwards-Wilkinson universality class. This phase has
mean growing velocity different from zero~i.e., grows con-
tinuously in time! and has a rough surface appearance
shown in Fig. 2~a!. In order to further confirm that the mode
is in the EW universality class and not in the KPZ one w
have computed the dependence of the averaged velocit
the tilt @3#, and verified that there is none, i.e., the velocity
a constant for every fixed tilt~at least for values ofp suffi-
ciently above the roughening transition, for which numeric
accuracy is better!.

Let us present here a simple argument showing why
rough phase is EW-like and not KPZ-like. For that, we c
culate the mean over different runs of the quantityh( i ,t
1D) ~whereDt51/L is a time increment! for a fixed con-
figurationh( i ,t) at time t. We can write

^h~ i ,t1Dt !&2h~ i ,t !5
p

L
1

1

L

~12p!

2
a„h~ i 11,t !2h~ i ,t !…

~3!

1
1

L

~12p!

2
a„h~ i 21,t !2h~ i ,t !…

~4!

5
p

L
1

~12p!

2L
a„h~ i 11,t !1h~ i 21,t !22h~ i ,t !…, ~5!

where it can be seen that there are two different contributi
to the local velocity at each sitei; the contribution coming
from deposition, proportional top, and the term arising from
the smooth away processes. Observe that in this calcula
we have neglected the effect of the integer part functi
which we assume to be irrelevant in this phase~i.e., we ex-
pect it to reduce the mean velocity but not to change qu
tatively the behavior@26#!.

Dividing Eq. ~5! by Dt and performing the thermody
namic limit, i.e.,L→` ~or equivalentlyDt→0), we obtain

K ]h~x!

]t L 5p1
~12p!

2
a¹2h~x,t !, ~6!

which corresponds to differential evolution of the Edward
Wilkinson equation~averaged over noise! driven by an ex-
ternal constant forcep. The main point of this calculation is
that it shows that the dynamics is controlled by a Laplac
term, and no gradient square terms appear. Therefore,
model is expected to be in the EW universality and not in
KPZ one. Forp51 or a50 this equation describes rando
deposition as, in fact, is the case in our model. Equation~6!
fails to describe the growth of our model in the casesp
<pc or a51. In fact, as stated before, in Eq.~5! the integer
part function has been neglected and this approximatio
incorrect when~i! p<pc , the fluctuations of the surface ar
small, and the rounding-off mechanism due to the inte
part function takes over, pinning and flattening the surfa
and~ii ! in the casea51, for which in the absence of smooth
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ening, the continuum limit has to be taken more carefully.
this last case, we expect the dynamics to be controlled by
diffusion of height steps.

B. Flat universality class

This universality class is characterized by critical index
a50 andb50 ~with logarithmic corrections!. We observe
this phase for parameter values:p,pc(a) with pÞ0 anda
Þ0,1. In Fig. 1 we plot points in this class with crosses in t
parameter space. In this phase, height fluctuations are i
pendent on sample size~i.e., a50), the mean surface veloc
ity is zero in the thermodynamic limit, and the lowest lev
(h50) is occupied with a finite density as shown in Fi
2~b!. Due to finite-size effects, finite systems in this cla
may have a nonvanishing velocity.

In Fig. 3~b! we have plotted in a semilogarithmic scale t
surface width versus time for different system sizes~see fig-
ure caption!. Observe that the width has a logarithmic depe
dence ont for short times,

W~ t !} log~ t !. ~7!

For all the different points in this phase, by employing da
collapse techniques we evaluatea50.0060.05 andb50
with logarithmic corrections.

The existence of this phase is due to the fact that for sm
values ofp the deposition process is more unlikely than t
smoothening one, and there is a physical constraint prev
ing the surface to go below the lowest,h50 level. The in-
teger part function in the dynamic rules favors the evapo
tion process by giving an extra negative drift term w
respect to Eq.~6!. This extra term binds the surface to th
lowest level making it flat for small values ofp. In particular,
for a fixed value ofa, the roughening transition correspon
to the value ofp for which this extra negative term is equ
to 2p. For values ofp slightly larger than that critical value
the surface unbinds and grows with constant velocity.

C. Self-similar universality class

This class is characterized bya51, b51/2, andz52; it
is observed for parameter valuesa51 andpÞ0,1, which are
plotted in Fig. 1 with empty circles. In Fig. 3~a! we show the
collapse of the width for different system sizes~see figure
caption!; from the best data collapse we measurea51.00
60.02 andb50.5060.03. The surface in this regime is
therefore, self-similar; that is, height fluctuations are of
order of magnitude of the system size@see also Fig. 2~c!
where a typical profile is shown#. In this case, contrary to
aÞ1 we observe no roughening transition~except for a
trivial one atp50.!

Observe that fora51 the dynamical rules can be writte
as

h~ i 0 ,t !5h~ i 0 ,t21!11 with Prob p,

h~ i 0 ,t !5h~ i 011,t21! with Prob ~12p!/2, ~8!

h~ i 0 ,t !5h~ i 021,t21! with Prob ~12p!/2,

where the integer part function, being redundant, has b
omitted. Therefore, the extra negative driving term, aris
he
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as a consequence of the integer part function in the dynam
~which, as discussed in the previous subsection, fav
evaporation! does not exist in this case. This explains w
there is no roughening transition fora51.

The main qualitative physical difference between th
phase, the EW, and the flat phases, is that here there i
smoothening of height gradients. Large steps diffuse in sp
due to the effect of the second and third rules in Eq.~8!, but
do not smooth away, creating a much rougher surface.

Now we study the mean-field solution of this case, o
tained by neglecting spatial correlations. This turns out to
an useful calculation as we will show afterwards.

The master equation for the probabilityP(h,t) for a given
site to have a height valueh at time t is

]P~h,t !

]t
5pP~h21,t !2pP~h,t !1~12p!P~h,t !

2~12p!P~h,t !

5p@P~h21,t !2P~h,t !#, ~9!

where we have assumed nearest-neighbor sites to have
same probability distribution as the site under considerat
Equation~9! is the same equation that we would obtain if w
considered a mean-field approximation of the random de
sition process. In order to solve Eq.~9!, it is convenient to
introduce the generating function defined as

G~x,t !5 (
h50

`

xhP~h,t !, ~10!

with the normalization conditionG(1,t)51 ; t. The master
equation written in terms ofG(x,t) reads

]G~x!

]t
5p@xG~x,t !2G~x,t !#5p~x21!G~x,t !. ~11!

By taking derivatives with respect to the dummy variablex,
one can write

W2~ t !5^h22^h&2&5@]x
2G~x!1]xG~x!#ux51

2@]xG~x!ux51#2. ~12!

Taking time derivatives of both sides and integrating t
resulting equation, we finally obtainW(t)5Apt, and, conse-
quently, b51/2. On the other hand, the height differenc
among neighbors~or steps! perform a random diffusion in
the direction perpendicular to the growth. Like in the case
a random walker the average step displacement scales a
square root of time. But the effective time for step displac
ment is (12p)t, and, therefore, in order to cover a distan
L, a characteristic time

t;L2/~12p! ~13!

is needed. Consequently, the dynamical exponent isz52.
Combining this result with the fact thatb51/2, we obtain
a51 just by using the scaling relationa5z/b. Therefore,
the values of the critical exponents found in mean-field
proximation agree perfectly with the numerical resul
Moreover, the mean-field approximation also reproduces
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dependence of the saturation width as a function ofp for a
fixed system size. In fact, usingW(t)5Apt and Eq.~13! we
find

Wsat~p!;LA p

~12p!
~14!

in perfect agreement with the simulation results as show
Fig. 4.

D. Random deposition universality class

The random deposition class is characterized bya5`
andb51/2. With dashed lines in Fig. 1 we have plotted t
two lines in this class, namely, those given by the conditio
a50 and p51, respectively. For these values the on
physical mechanism present is the random deposition of
ticles. In this phase the surface is spatially uncorrelated,
its roughness increases rapidly with time, withb51/2, and
there is no width saturation (z5`) as shown in Fig. 2~d!.

E. The roughening transition

As stated previously, both in our model and in the pre
ously discussed ones, the transition between the flat and
rough phase belongs to the percolation DP universality cl
The reason for this can be explained by mapping the dyn
ics in a directed percolationlike model. In order to do this
our model ~for the others, similar mappings can be pe
formed!, we introduce a new set of variables$si% defined as

si51 if h~ i !50,
~15!

si50 if h~ i !Þ0.

By studying the evolution of these variables we focus o
attention on the lowest height level occupation. This inf
mation is enough to describe the phase transition@18# as we
show in what follows. A sitei with si51 corresponds to an
occupied~active! site in a DP-like model~or better, in a
contact process model, which is a sequentially updated
sion of DP@20#!. On the contrary,si50 for empty~absorb-
ing! sites of the DP-like model. The deposition process m
change with probabilityp an occupied,si51, site into an
unoccupied,si50, site. This same mechanism is also pres

FIG. 4. Saturated width of a system of sizeL564 with a50.5,
as a function ofp. The data are extremely well fitted by the mea
field prediction.
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in the contact process@20#. On the other hand, the smooth
ening mechanism, occurring with probability 12p, may in-
duce@27# the ‘‘infection’’ of an empty site by a neighboring
active site as in the contact process. In this language, the
surface phase corresponds to the DP active phase, an
rough phase corresponds to the absorbing one. The key
ture is that in absorbing regions~that is, in regions withsi
50), activity cannot be generated spontaneously. This is
main physics of DP and, therefore, the critical behavior
the roughening transition is related to the transition into
absorbing phase of DP and related models.

By using this mapping the scaling of some magnitud
can be related to DP exponents. In particular, the densit
sites at the lowest leveln0 should scale as a function of th
distance to the critical point,«5up2pcu, like n0;«bDP.
Right at the critical pointn0 decays in time asn0(t)
;t2uDP. For finite systems of sizeL,

n0;L2bDP /n',DP;L2xf , ~16!

wheren',DP is the correlation length exponent. Finally, th
mean surface velocity is inversely proportional to the l
time t5u«u2n i ,DP of the DP active phase, wheren i ,DP is the
usual correlation time exponent. Therefore,

v;«2n i;L2n i /n';L2xv. ~17!

The one-dimensional DP values of the previously introduc
exponents are bDP50.27649(4), u50.15947(3), xf
50.25208(5), andxv51.58074(4)~numbers in parenthese
denote uncertainties in the last figure! @28#.

In order to verify numerically if the previous predictio
holds we have studied extensively thea50.5 case. We have
performed numerical simulations in order to determine cr
cal exponents, to be compared with their corresponding
values. In particular, by considering a system sizeL53000,
and averaging over 8000 independent runs, we measuren0 as
a function of time. A power-law decay is observed at~the
critical point! pc50.1374060.00005, with an associated ex
ponent

u50.16060.003, ~18!

in good agreement with its DP value. Using the previou
estimated value of the critical point, we measure the stati
ary density of sites at the lowest layerh50 for p,pc . In
Fig. 5~b! we show the data for«P@1024,1021#. Performing
a fit for small values of« we find

bDP50.27560.007, ~19!

also in good agreement with its DP value. By performing
finite-size scaling analysis, we determinexf50.25060.03
andxv51.5760.01 to be compared with their correspondin
DP valuesxf50.25208(3) andxv51.5807(5), respectively.
Numerical data are shown in Figs. 5~c! and 5~d!.

Summing up, all the measured exponents confirm the
pothesis that the roughening transition is controlled by a
fixed point.
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IV. RENORMALIZATION APPROACH

Having described in detail the model phenomenology
this section we apply the RSRG technique recently propo
@12–14# to renormalize our model. For a detailed descripti
of the method we refer the reader to Ref.@14#. In a nutshell
the RG method consists of two main ingredients. One is
definition of cells of generic substrate lengthLk52kL0
~where L0 is the length of the minimal relevant substra
scale! and heighthk , with which the space in which the
surface grows can be covered; cells are progressively
vaded by the growing surface~see Fig. 6!. The second one is

FIG. 5. Critical indexes characterizing the DP transition.~a!
Log-log plot of the density of sites at the lowest level as a funct
of time at (0.1374,0.5); the associated critical exponent isu
50.16060.003.~b! Log-log plot of the asymptotic density of state
at the lowest site versus«5pc2p; from the slope we measur
bDP50.27560.007. In~c! and~d! we report the density of sites a
the lowest level and the mean velocity at the critical point for d
ferent system sizes. The corresponding critical indexes arexf

50.25060.003 andxv51.5760.01.

FIG. 6. A system of sizeLk1254Lk can be studied composed o
four cells of sizeLk , or alternatively by iterating twice a partition in
cells of half length. See text.
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the identification of the effective dynamics of these cells a
generic scale; that is, one studies the effective rules by wh
cells are progressively invaded by the growing surface a
given scale. This effective dynamics is described by para
eters that change upon changing the scale of description
our case we have a set of parametersxk5(ak ,pk) at scale
Lk . Knowing the effective dynamics at scaleLk , defined by
xk and the associated width at that scaleWk , the renormal-
ization problem consists of determining what the width v
ues are ofWk1m and the effective dynamic parametersxk1m
at a coarser scaleLk1m . This problem was analyzed in@12–
14#, with the final conclusion that one can write,

Wk1m
2 5Wk

2Fm~xk!, ~20!

whereFm(xk)5114w2(m,xk) andw(m,xk) is the width of
a system composed of 2m cells of unitary height with a dy-
namics driven by the parametersxk . These last functions can
be determined by means of a rather inexpensive Monte C
simulation. The width at scalek12 can be calculated in two
different ways:~i! by direct use of the previous formula wit
m52, or alternatively,~ii ! by iterating twice the previous
transformation withm51. Imposing that both the previou
procedures give the same result for the widthWk12, one
obtains a renormalization condition, namely,@12,14#

xk115F1
21

„F2~xk!/F1~xk!…. ~21!

For monoparametric models this equation is enough to de
mine the evolution under RG transformations of the effect
parameterxk , and from it all the scale-invariant physics ca
be elucidated@12–14#. In the present two-parametric dynam
ics it is necessary to consider another independent analo
equation, corresponding to calculating the width at scalk
13 in two different ways,

xk115F1
21

„F2~xk!/F1~xk!…,
~22!

xk115F2
21

„F3~xk!/F1~xk!….

The first equation is just Eq.~21!, and the second states th
the width obtained by dividing the system in eight ce
should be the same as the width obtained dividing first
system in two blocks, and then each of these blocks in f
subcells. This set of equations give the~discrete! flux of the
effective dynamics parameters upon coarse graining.
scale-invariant dynamics is determined by the fixed point~or
points! of Eq. ~22!, x* for which

F1~x* !5F2~x* !/F1~x* !,
~23!

F2~x* !5F3~x* !/F1~x* !,

is satisfied. Oncex* is known, thea exponent is easily de
termined by

a5 1
2 log2@F1~x* !#. ~24!

In order to evaluate theF1 , F2, andF3 functions we have
performed Monte Carlo simulations for a system of sizeL
52,4,8, and averaged, once the stationary state is rea
for long enough times. We have determined these functi

n



a

e
cy

t.
rb
r

ux
o

on
ua
nd

ia
n

b
-

n

ith

ble
t is,
f a
ns,
spirit
ed

in
ant

to

by

a
we
ain

ng
em,
ical
al-

ol-
he
eans
ap-

in-
re-
the

d

fin

er-
dis-
for-

PRE 60 3725RENORMALIZATION-GROUP STUDY OF ONE- . . .
on the sites of a 1003100 lattice in the parameter space, th
is, for values ofp anda multiples of 0.01.

In Fig. 7 we show the curves corresponding toF1
5F2 /F1 and F25F3 /F1. The intersecting points of thes
curves are the RG fixed points within numerical accura
We find the following stable fixed points:

p50.75, a51, corresponding toa51.0060.02,

p50.40, a50.5, corresponding toa50.5060.01,
~25!

p50, ; a, corresponding toa50.0060.01,

while at (p,a)5(0.14,0.5) there is an unstable fixed poin
The stability is determined by observing whether nea
points flow into the fixed point or flow away from it, unde
application of Eq.~22!, and the corresponding values ofa
are determined using Eq.~24!.

We have also determined different renormalization fl
lines as shown in Fig. 8. Observe that each continuous fl
line in Fig. 8 has been constructed by joining together c
secutive points obtained from renormalization-group eq
tions ~22! ~which determine a discrete iterative mapping a
not a continuous flow!. Observe that the lines defined bya
50.5 anda51 define invariant manifolds.

The accordance between the renormalization flow d
gram ~Fig. 8! and the phase diagram independently fou
with simulation on large systems~Fig. 1! is very good~com-
pare Figs. 1 and 8!. In particular,~a! For all points yielding
in the EW phase we find trajectories converging to the sta
fixed point (0.4,0.5) witha50.560.01, in perfect agree
ment with the EW value.~b! The separatrix in Fig. 1 is
reproduced quite accurately in Fig. 8; in particular, the u
stable fixed point (0.14,0.5) is located on it.~c! Points to the
left of the separatrix~i.e., points in the flat phase! flow to-
wards the fixed line atp50 for which a50 ~corresponding

FIG. 7. The two lines~marked, respectively, with diamonds an
empty circles! correspond to the values for whichF1(x)
5F2(x)/F1(x) andF2(x)5F3(x)/F1(x), within the numerical er-
ror, respectively. The intersection points of these two lines de
the dynamic fixed points, invariant under RG flow. See text.
t
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to the flat phase!. ~d! All points with a51 andp.0, i.e., in
the self-similar phase, flow to a fixed point at (0.75,1) w
a51.0060.01.

We have verified all the above conclusions to be sta
when more refined RSRG algorithms are considered. Tha
instead of considering bypartitions and quadripartitions o
given growing surface, one can consider larger partitio
and the technique described above remains the same in
@12,14#. By doing this, we observe all the above-describ
results to remain unaltered. This stability, upon changes
the RSRG details, supports the fact that no new relev
parameters have to be introduced upon renormalization
describe the scale-invariant dynamics@14#, i.e., the scale-
invariant dynamics is well described at an arbitrary scale
the found fixed points.

V. CONCLUSIONS

We have discussed different growth models exhibiting
one-dimensional roughening transition. In particular,
have introduced a two-parametric model capturing the m
physics of this type of roughening transition, i.e., exhibiti
a rough and a flat phase, and a critical line separating th
related to directed percolation. The model has the techn
advantage that no new parameter proliferate upon renorm
ization. Apart from the previously discussed phenomen
ogy, the model exhibits also a self-similar phase. All t
different phases and transitions have been analyzed by m
of extensive numerical simulations and some analytical
proaches.

We have renormalized this model by using a recently
troduced RSRG approach. In particular, fixed points, cor
sponding to the scale-invariant dynamics are found, and

e FIG. 8. Renormalization-group flow for Eq.~2!. The stable fixed
points arep50.4, a50.5 ~EW behavior!; p50.75, a51 ~self-
similar phase!; p, ; a ~flat phase!; and the unstable pointp
50.14, a50.5 ~corresponding to a DP transition!. For the flux line
starting at (0.95,0.95), we show explicitly the points found by it
ating the renormalization-group equations. To guide the eye
crete sequences of points obtained by iteration of the RG trans
mation are plotted as continuous lines.
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corresponding roughness exponent determined. The re
are in perfect accordance with all the numerical and ana
cal findings. In particular, the phase diagram is perfectly
produced: The rough, flat, and self-similar phases, as we
the separatrix among them and their associated rough
exponents, are identified with great accuracy.

This confirms the general validity of the RSRG method
deal with anisotropic fractal growth in cases others than K
growth for which it was explicitly designed.
e,
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